Wnt Signaling and Its Impact on Mitochondrial and Cell Cycle Dynamics in Pluripotent Stem Cells

نویسندگان

  • Megan L Rasmussen
  • Natalya A Ortolano
  • Alejandra I Romero-Morales
  • Vivian Gama
چکیده

The core transcriptional network regulating stem cell self-renewal and pluripotency remains an intense area of research. Increasing evidence indicates that modified regulation of basic cellular processes such as mitochondrial dynamics, apoptosis, and cell cycle are also essential for pluripotent stem cell identity and fate decisions. Here, we review evidence for Wnt regulation of pluripotency and self-renewal, and its connections to emerging features of pluripotent stem cells, including (1) increased mitochondrial fragmentation, (2) increased sensitivity to cell death, and (3) shortened cell cycle. We provide a general overview of the stem cell-specific mechanisms involved in the maintenance of these uncharacterized hallmarks of pluripotency and highlight potential links to the Wnt signaling pathway. Given the physiological importance of stem cells and their enormous potential for regenerative medicine, understanding fundamental mechanisms mediating the crosstalk between Wnt, organelle-dynamics, apoptosis, and cell cycle will be crucial to gain insight into the regulation of stemness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

Alpha-Tocopherol increases the proliferation of induced pluripotent stem cell derived neural progenitor cells

In addition to its antioxidant effect, Vitamin E or α–tocopherol is suggested to enhance remyelination in the animal model of non-inflammatory demyelination. In this study, the possible proliferative effect of vitamin E on human- induced pluripotent stem cell-derived neural progenitors (hiPS-NPs) and the underlying mechanisms were investigated in vitro. NPs were induced from iPS cells via 3 ste...

متن کامل

The Pleiotropic Effects of the Canonical Wnt Pathway in Early Development and Pluripotency

The technology to derive embryonic and induced pluripotent stem cells from early embryonic stages and adult somatic cells, respectively, emerged as a powerful resource to enable the establishment of new in vitro models, which recapitulate early developmental processes and disease. Additionally, pluripotent stem cells (PSCs) represent an invaluable source of relevant differentiated cell types wi...

متن کامل

Expression of pluripotent stem cell markers in mouse uterine tissue during estrous cycle

It was assumed that uterine stem cells are responsible for the unique regenerative capacity of uterine. Therefore, the aim of the present study was to investigate the expression of the pluripotent stem cell markers in the mice uterine tissue during different stages of estrous cycles. Twelve virgin female NMRI mice (6 to 8 weeks old) were considered at proestrus, estrus, metestrus and diestrus a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018